Help ?

IGMIN: 我们很高兴您来到这里. 如果您是我们网站的新访客,并且需要更多信息,请点击“创建新查询”.

如果您已经是我们网络的成员,并且需要跟踪您已提交问题的任何进展,请点击‘带我去我的查询.'

Search

Organised by  IgMin Fevicon

Languages

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our vision is to connect scientists across various fields to enhance shared knowledge growth.

Articles

Our vision is to connect scientists across various fields to enhance shared knowledge growth.

Explore Content

Our vision is to connect scientists across various fields to enhance shared knowledge growth.

Identify Us

Our vision is to connect scientists across various fields to enhance shared knowledge growth.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

Dasaradharami Reddy K 作者 at IgMin Research

Our vision is to connect scientists across various fields to enhance shared knowledge growth.

Engineering Group (1)

Review Article Article ID: igmin294
Cite

Open Access Policy refers to a set of principles and guidelines aimed at providing unrestricted access to scholarly research and literature. It promotes the free availability and unrestricted use of research outputs, enabling researchers, students, and the general public to access, read, download, and distribute scholarly articles without financial or legal barriers. In this response, I will provide you with an overview of the history and latest resolutions related to Open Access Policy.

A Comprehensive Review of Federated Learning in Cancer Diagnosis and Prognosis Prediction
by Dasaradharami Reddy K, Anusha S and Ashalatha N

Federated learning (FL) has emerged as a promising approach for collaborative model training across multiple institutions without sharing sensitive patient data. In the context of cancer diagnosis and prognosis prediction, FL offers a potential solution to the challenges associated with data privacy and security. This paper reviews the application of FL in cancer diagnosis and prognosis prediction, highlighting its key benefits, limitations, and future research directions. We discuss the potential of FL to improve the accuracy and generalizabil...ity of predictive models by leveraging diverse and distributed datasets while preserving data privacy. Furthermore, we examine the technical and regulatory considerations associated with implementing FL in the healthcare domain. Finally, we identify opportunities for future research and development in FL for cancer diagnosis and prognosis prediction.

Artificial Intelligence
×

Why Publish with IgMin Research?

Submit Your Article