Help ?

IGMIN: 我们很高兴您来到这里. 如果您是我们网站的新访客,并且需要更多信息,请点击“创建新查询”.

如果您已经是我们网络的成员,并且需要跟踪您已提交问题的任何进展,请点击‘带我去我的查询.'

Search

Organised by  IgMin Fevicon

Languages

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

We are dedicated to creating intersections where disciplines meet to expand knowledge.

Articles

We are dedicated to creating intersections where disciplines meet to expand knowledge.

Explore Content

We are dedicated to creating intersections where disciplines meet to expand knowledge.

Identify Us

We are dedicated to creating intersections where disciplines meet to expand knowledge.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

摘要 at IgMin Research

We are dedicated to creating intersections where disciplines meet to expand knowledge.

General-science Group Review Article 文章编号: igmin286

Multicenter Molecular Integrals over Dirac Wave Functions for Several Fundamental Properties

Chemistry DOI10.61927/igmin286 Affiliation

Affiliation

    219-48 Matsugasaki, Kashiwa City, Chiba 277-0835, Japan

4.6k
VIEWS
205
DOWNLOADS
Connect with Us

摘要

Multicenter molecular integrals over Dirac wave functions can be derived by using the Gaussian-transform for the Dirac wave function, which was derived by the author, for several fundamental properties; i.e., the overlap integral, the kinetic energy one, the nuclear attraction one for the point-like nucleus and for the finite one, and the electron-repulsion integral.

参考文献

    1. Sun WM, Chen XS, Liu XF, Wang F. Gauge-invariant hydrogen-atom Hamiltonian. Phys. Rev. A 2010; 82:012107.
    2. Komorovský S, Repiský M, Malkina OL, Malkin VG. Fully relativistic calculations of NMR shielding tensors using restricted magnetically balanced basis and gauge including atomic orbitals. J Chem Phys. 2010 Apr 21;132(15):154101. doi: 10.1063/1.3359849. PMID: 20423162.
    3. Yoshizawa T. On the development of the exact two-component relativistic method for calculating indirect NMR spin-spin coupling constants. Chem. Phys. 2019;518:112-122.
    4. Mohanty A and Clementi E. Dirac-Fock self-consistent field method for closed-shell molecules with kinetic balance and finite nuclear size. Int. J. Quantum Chem. 1991;39:487-517.
    5. Visscher L, Visser O, Aerts PJC, Merrenga H, Nieuwpoort WC. Relativistic quantum chemistry: the MOLFDIR program package. Comput. Phys. Commun. 1994;81:120-144.
    6. Saue T, Faegri K, Helgaker T, and Gropen O. Principles of direct 4-component relativistic SCF: application to cesium auride. Mol. Phys. 1997;91: 937-950.
    7. Dyall KG. A systematic sequence of relativistic approximations. J Comput Chem. 2002 Jun;23(8):786-93. doi: 10.1002/jcc.10048. PMID: 12012355.
    8. Seino J, Hada M. Examination of accuracy of electron-electron Coulomb interactions in two-component relativistic methods. Chem. Phys. Letters 2008;461:327-331.
    9. Peng D, Middendorf N, Weigend F, Reiher M. An efficient implementation of two-component relativistic exact-decoupling methods for large molecules. J Chem Phys. 2013 May 14;138(18):184105. doi: 10.1063/1.4803693. PMID: 23676027.
    10. Liu W. Essentials of relativistic quantum chemistry. J Chem Phys. 2020 May 14;152(18):180901. doi: 10.1063/5.0008432. PMID: 32414273.
    11. Knecht S, Repisky M, Jensen HJA, Saue T. Exact two-component Hamiltonians for relativistic quantum chemistry: Two-electron picture-change corrections made simple. J Chem Phys. 2022 Sep 21;157(11):114106. doi: 10.1063/5.0095112. PMID: 36137811.
    12. Sunaga A, Salman M, Saue T. 4-component relativistic Hamiltonian with effective QED potentials for molecular calculations. J Chem Phys. 2022 Oct 28;157(16):164101. doi: 10.1063/5.0116140. PMID: 36319409.
    13. Fukui H, Baba T, Shiraishi Y, Imanishi S, Kubo K, Mori K, and Shimoji M, “Calculation of nuclear magnetic shieldings: infinite-order Foldy-Wouthuysen transformation”, Mol. Phys. 2004;102:641-648.
    14. Melo JI, Ruiz de Azúa MC, Peralta JE, Scuseria GE. Relativistic calculation of indirect NMR spin-spin couplings using the Douglas-Kroll-Hess approximation. J Chem Phys. 2005 Nov 22;123(20):204112. doi: 10.1063/1.2133730. PMID: 16351245.
    15. Xiao Y, Liu W, Cheng L, Peng D. Four-component relativistic theory for nuclear magnetic shielding constants: critical assessments of different approaches. J Chem Phys. 2007 Jun 7;126(21):214101. doi: 10.1063/1.2736702. PMID: 17567184.
    16. Sun Q, Xiao Y, Liu W. Exact two-component relativistic theory for NMR parameters: general formulation and pilot application. J Chem Phys. 2012 Nov 7;137(17):174105. doi: 10.1063/1.4764042. PMID: 23145715.
    17. Cheng L, Gauss J, Stanton JF. Treatment of scalar-relativistic effects on nuclear magnetic shieldings using a spin-free exact-two-component approach. J Chem Phys. 2013 Aug 7;139(5):054105. doi: 10.1063/1.4816130. PMID: 23927241.
    18. Ishida K. Gaussian-transform for the Dirac wave function and its application to the multicenter molecular integral over Dirac wave functions for solving the molecular matrix Dirac equation. IgMin Res. 2024 Nov 04;2(11):897-914.
    19. Sack RA. Generalization of Laplace’s expansion to arbitrary powers and functions of the distance between two points. J Math Phys. 1964;5:245-251.
    20. Ishida K. Calculus of several harmonic functions. J Comput Chem Jpn, Int Ed. 2022;8:2021-0029.
    21. Andrae D. Nuclear charge density distribution in quantum chemistry. In: Schwerdtfeger P, editor. Relativistic Electronic Structure Theory Part 1. Amsterdam: Elsevier. 2002; 203-258.
    22. Visscher L, Dyall KG. Dirac-Fock atomic structure calculations using different nuclear charge distributions. At Data Nucl Data Tables. 1997;67:207-224.
    23. Hennum AC, Klopper W, Helgaker T. Direct perturbation theory of magnetic properties and relativistic corrections for the point nuclear and Gaussian nuclear models. J Chem Phys. 2001;115:7356-7363.
    24. Kobus J, Quiney HM, Wilson S. A comparison of finite difference and finite basis set Hartree-Fock calculations for the N molecules with finite nuclei. J Phys B. 2001;34:2045-2056.
    25. Ishida K. General formula evaluation of the electron-repulsion integrals and the first and second derivatives over Gaussian-type orbitals. J Chem Phys. 1991;95:5198-5205.
    26. Watson GN. A treatise on the theory of Bessel functions. Cambridge University Press. 1980; 393.
    27. Gradshteyn IS, Ryzhik IM. Tables of Integrals, Series, and Products. New York: Academic Press; 2007. Formula #3.471.3.
    28. Shavitt I, Karplus M. Gaussian-transform method for molecular integrals. I. Formulation for energy integrals. J. Chem. Phys. 1965;45:398-414.
×

Why Publish with IgMin Research?

Submit Your Article