Help ?

IGMIN: 我们很高兴您来到这里. 如果您是我们网站的新访客,并且需要更多信息,请点击“创建新查询”.

如果您已经是我们网络的成员,并且需要跟踪您已提交问题的任何进展,请点击‘带我去我的查询.'

Search

Organised by  IgMin Fevicon

Languages

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our aim is to boost the sharing of ideas across different fields and push the boundaries of current knowledge.

Articles

Our aim is to boost the sharing of ideas across different fields and push the boundaries of current knowledge.

Explore Content

Our aim is to boost the sharing of ideas across different fields and push the boundaries of current knowledge.

Identify Us

Our aim is to boost the sharing of ideas across different fields and push the boundaries of current knowledge.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
[email protected]
E-Books Support
[email protected]
Webinars & Conferences Support
[email protected]
Content Writing Support
[email protected]
IT Support
[email protected]

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

摘要 at IgMin Research

Our aim is to boost the sharing of ideas across different fields and push the boundaries of current knowledge.

Engineering Group Research Article 文章编号: igmin134

Properties of Indium Antimonide Nanocrystals as Nanoelectronic Elements

Electronics DOI10.61927/igmin134 Affiliation

Affiliation

    Nikolai Dmitrievich Zhukov, Limited Liability Company “NPP Volga”, Saratov, Russia, Email: [email protected]

2.6k
VIEWS
684
DOWNLOADS
Connect with Us

摘要

By measurements on single nanocrystals of indium antimonide in the interelectrode nanogap of a scanning probe microscope, current-voltage characteristics with quasiperiodic current pulsations, are explained in the model of Bloch oscillations in a perfect nanocrystal, and individual sharp peaks - conductivity resonances, explained in the model of quantum-size limitation of the wave process of electron transport in a deep potential hole. The mutual influence of radiation from two statistical ensembles of nanocrystals from the same batch was experimentally studied and established. It is assumed that this radiation is entangled photons. It is proposed to use nanocrystals in nanoelectronics as a single-electron memristor, a single-photon bolometer, and a source of microwave radiation.

数字

参考文献

    1. Van Embden J, Gross S, Kittilstved KR, Della Gaspera E. Colloidal Approaches to Zinc Oxide Nanocrystals. Chem Rev. 2023 Jan 11;123(1):271-326. doi: 10.1021/acs.chemrev.2c00456. Epub 2022 Dec 23. PMID: 36563316.
    2. Montanarella F, Kovalenko MV. Three Millennia of Nanocrystals. ACS Nano. 2022 Apr 26;16(4):5085-5102. doi: 10.1021/acsnano.1c11159. Epub 2022 Mar 24. PMID: 35325541; PMCID: PMC9046976.
    3. Porotnikov D, Zamkov M. Progress and Prospects of Solution-Processed Two-Dimensional Semiconductor Nanocrystals. The Journal of Physical Chemistry C.2020; 124 (40): 21895-21908. https:/ /doi.org/10.1021/acs.jpcc.0c06868
    4. Alizadeh-Ghodsi M, Pourhassan-Moghaddam M, Zavari-Nematabad A, Walker B, Annabi N, Akbarzadeh A. State-of-the-Art and Trends in Synthesis, Properties, and Application of Quantum Dots-Based Nanomaterials. Part Part Syst Charact. 2019; 36: 1800302. DOI: 10.1002/ppsc.201800302.
    5. Zhukov ND, Sergeev SA, Hazanov AA, IT // Technical Physics Letters. 2022; 48:70-73.
    6. Yekimov AI, Onushchenko AA. Pis'ma v ZHETF. 1984; 40(8): 337.
    7. Dragunov VP, Neizvestnyy IG, Gridchin VA. Fundamentals of Nanoelectronics. M: Logos. 2006.
    8. Zhukov ND, Gavrikov MV. Technical Physics Letters. 2022; 48: 61-65.
    9. Radantsev VF. Electronic properties of semiconductor nanostructures. Ekaterinburg, 2008; 415. https://elar.urfu.ru/bitstream/10995/1473/7/1334870
    10. Lesovik GB, Sadovskiy IA. Scattering matrix approach to the description of quantum electron transport. Advances in physical sciences. 2011; 181(10): 1041.
    11. Glinskiy GF. Pis'ma v ZHTF. 2018; 44(6): 17.
    12. Utsugi T, Kuno T, Lee N, Tsuchiya R, Mine T, Hisamoto D, Saito S, Mizuno H. Phys Rev B. 2023; 108: 235308.
    13. Reich KV. Conductivity of quantum dot arrays. Advances in Physical Sciences. 2020; 190: 1062-1084. DOI: https: //doi.org/10.3367/UFNr.2019.08.038649
    14. Diaconescu B, Padilha LA, Nagpal P, Swartzentruber BS, Klimov VI. Measurement of electronic states of PbS nanocrystal quantum dots using scanning tunneling spectroscopy: the role of parity selection rules in optical absorption. Phys Rev Lett. 2013 Mar 22;110(12):127406. doi: 10.1103/PhysRevLett.110.127406. Epub 2013 Mar 22. PMID: 25166850.
    15. Zhukov ND, Gavrikov MV, Shtykov SN. Dimensional Modeling of the Synthesis and Conductivity of Colloidal Quantum Dots. Semiconductors. 2022; 56: 269-274.
    16. Zhukov ND, Gavrikov MV, Kabanov VF, Yagudin IT. Semiconductors. 2021; 55: 470–475.
    17. Montanarella F, Kovalenko MV. Three Millennia of Nanocrystals. ACS Nano.2022; 16(4):5085-5102. https://doi.org/10.1021/ acsnano.1c11159
    18. Krylsky DV, Zhukov ND. Technical Physics Letters. 2020; 46: 901–904.
    19. Zhukov ND, Gavrikov MV. MNIZH. 2021; 8(110): 19. https://doi.org/10.23670/IRJ.
    20. Dmitriyev IA, Suris RA. Electron localization and bloch oscillations in quantum-dot superlattices under a constant electric field. Physics and Technology of Semiconductors. Physics and Technology of Semiconductors. 2001; 35(2): 219.
    21. Bagrayev NT, Buravlev AD, Klyachkin LYe, Malyarenko AM, Gel'khoff V, Ivanov VK, Shelykh IA. Physics and Technology of Semiconductors. 2002; 36(4): 462.
    22. Vorob'yev LE, Danilov SN, Zerova VL, Firsov DA. Physics and Technology of Semiconductors. 2003; 37(5):604.
    23. Ivashkin A, Abdurashitov D, Baranov A, Guber F , Morozov S, Musin S, Strizhak A, Tkachev I. Testing entanglement of annihilation photons. Scientific Reports. 2023; 13:7559. https://doi.org/10.1038/s41598-023-34767-8
    24. Fujihashi Y, Shimizu R, Ishizaki A. Probing exciton dynamics with spectral selectivity through the use of quantum entangled photons. PhysicalRev Research. 2020; 2: 023256. DOI: 10.1103/PhysRevResearch.2.023256
    25. Lib O, Hasson G, Bromberg Y. Real-time shaping of entangled photons by classical control and feedback. Sci Adv. 2020; 6: eabb62989.
    26. Patent RU 2777199 “Method of manufacturing a conductive nanocell with quantum dots.” Priority 08/10/2021
    27. Chua, Leon O.Memristor-The missing circuit element. IEEE Transactions on Circuit Theory. 1971; 18: 507-519.
    28. Xiao Y, Jiang B, Zhang Z, Ke S,  Jin Y,  Wen X,  Ye Sci Technol Adv Mater. 2023; 24(1): 2162323. doi: 10.1080/14686996.2022.2162323

类似文章

Preventing Chronic Pain: Solutions to a Public Health Crisis
James Fricton, Karen Lawson, Robert Gerwin and Sarah Shueb
DOI10.61927/igmin282
Potentially Toxic Metals in Cucumber Cucumis sativus Collected from Peninsular Malaysia: A Human Health Risk Assessment
Chee Kong Yap, Rosimah Nulit, Aziran Yaacob, Zaieka Shamsudin, Meng Chuan Ong, Wan Mohd Syazwan, Hideo Okamura, Yoshifumi Horie, Chee Seng Leow, Ahmad Dwi Setyawan, Krishnan Kumar, Wan Hee Cheng and Kennedy Aaron Aguol
DOI10.61927/igmin200
Cyber Threat Analysis (CTA) in Current Conflicts
Zbigniew Ciekanowski and Sławomir Żurawski
DOI10.61927/igmin169
×

Why Publish with IgMin Research?

Submit Your Article